Metal Heat Treatment Vacuum Furnace

PRODUCT INTRODUCTION

[Applications of Metal Heat Treatment]

♦ Vacuum Brazing

Features	 Maintains clean luster and has no deformation, without using flux Excellent performance for bonding of ferrous/non-ferrous metals Flexible atmosphere of high vacuum ~ atmospheric ~ pressure
Steel Grade	STS, carbon steel, copper, nickel alloy, titanium, tantalum, molybdenum

♦ Vacuum Sintering

Features	 By applying heat and/or pressure to the powder molded body, securing a dense solid phase without melting or oxidation Accurate temperature control and uniformity is the key process parameter. Higher temperature than other heat treatment
Steel Grade	STS, 7-4PH / 15-5PH, Alloy 718, carbon steel, high tensile steel

[Applications of Metal Heat Treatment]

♦ Vacuum Annealing

Features	 Lower hardness and improve ductility to facilitate subsequent process Maintains luster on a clean surface without deformation
Steel Grade	STS, alloy steel, tool steel, powder sintered body, electric alloy steel, copper, brass, titanium alloy steel, nickel alloy steel

♦ Vacuum Precipitation • Age Hardening

Features	 Clean luster without deformation at relatively low temperature Accurate temperature control in vacuum is the most important
Steel Grade	stainless steel, high alloy steel (maraging steel), inconel

[Features of Metal Heat Treatment Fce]

We fully meet the user's requirement for vacuum heat treatment process

[Standard Specification of Metal Heat Treatment Fce]

ltem	Specification		
Furnace type	Horizontal or vertical vacuum furnace		
Application	Vacuum brazing, sintering or heat treatment		
Temperature	400 ~ 1350℃		
Loading volume	96L ~ 1500L		
Uniformity	±4~10℃ [1000℃, no load, 9~13 points]		
Heat-up rate	5 ~ 10°C/min		
Heating circuit	2 ~ 6 circuits		
Temp. measure	K type, J type or C type T/C		
Hot zone	Graphite or Molybdenum		
Atmosphere	Vacuum(partial) heating, Nitrogen cooling		
Low vacuum	Mechanical booster pump + Oil rotary pump		
High vacuum	Diffusion pump or Cryogenic pump		
Leak rate	Below 1×10⁻³ Pa ・m³/sec		
Forced cooling	Heat exchanger & Blower, Intra or extra circulation		
System control	PLC control, Touch panel or PC HMI interface		
Optional items	Lift car, Closed cooling water system		

[Standard Dimension of Metal Heat Treatment Fce]

Model code	TVQHT-S400	TVQHT-S600	TVQHT-S800	TVQHT-S1000	
Work zone	400*400*600	600*600*900	800*800*1200	1000*1000*1500	
Capacity	300Kg	600Kg	1200Kg	2500Kg	
Operating temp.	400 ~ 1350°C				
Uniformity	±4 ~ 10°C				
Vacuum level	1 Pa				
Electricity	AC 380V, 3Ph.				
	1. Hot zone materials : Graphite or Molybdenum				
	2. High vacuum pump : Diffusion oil pump or Cryogenic pump				
Ontions	3. Cooling system :	Extra circulation or intra circulation			
Options	4. Convection heating : Circulation fan operated under 800℃				
	5. Chamber type : Vertical or horizontal				
	6. Closed water circulation, sample loading car, gas buffer tank				

[Simulation of Heat Distribution Analysis]

DYNamic THERMVAC Best THERMVAC

[Simulation of Heat Flow Analysis]

[Details _ Vacuum Chamber]

Responding to product shape, loading capacity & method and installation site layout

Boundary Conditions

- ► Max Temp. of inner surface : 300°C
- ► Internal pressure : Vacuum
- ► External pressure : Atmospheric
- ► Water pressure of cooling jacket : 3Kgf/cm²

Fabrication

- ► Type : Horizontal or vertical cylinder
- ► Double wall water cooled jacket
- Materials : STS304(inner outer wall)
 Mild steel(flange)
- ► Inside surface : Buffing #300

[Details _ Hot Zone _ Molybdenum]

♦ Responding to operating temperature, process atmosphere and loading conditions

DYNamic THERMVAC Best THERMVAC

[Details _ Hot Zone _ Graphite]

◆ Responding to operating temperature, process atmosphere and loading conditions

[Details _ Evacuation System]

Responding to process characteristics, hot zone materials and/or loading product

[Details _ Power Supply]

• Efficient response to electric property of vacuum furnace, low voltage/high ampere

[Details _ Accessories]

♦ Improving efficiency of vacuum furnace production line and ease of its maintenance

Forced cooling	Sample loading	By-product trapping	
► Heat resistant blower	Electric drive, hydraulic power	Vapor condenser, particle filter	
 Heat exchangers 	 Up/down, back and forth 	2~3 stage parallel or straight	
 Intra vs. extra circulation 	 Single operator, Remote control 	 Saturation monitoring by pressure 	

[Details _ Control Panel]

◆ PLC sequence control, Touch panel GUI or PC base integrated HMI interface

[Site View of Metal Heat Treatment Furnaces]

\diamond Molybdenum fce for Cu+Al₂O₃ brazing, carbon fce for oxygen-free copper sintering

